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Abstract 

Participation in U.S. Federal Crop Insurance Programs (FCIP) has increased over time at both 

extensive (insured acres) and intensive (coverage levels) margins, but clear spatio-temporal 

variations exist in these trends. Farmers’ decisions are likely influenced by recent indemnity or 

weather experiences (i.e., recency effects). We develop a model to identify two channels through 

which recent adverse weather experiences may affect participation, one where weather shocks 

directly affect participation and the other where they affect participation through indemnity 

payouts. With historic FCIP data over 2001-2017, we use parametric and non-parametric methods 

to estimate these effects. At both extensive and intensive margins, higher past indemnities are 

found to encourage participation. This provides evidence that prior adverse weather shocks work 

indirectly. Less evidence is found in favour of direct weather effects. We also find that the increase 

in participation due to indemnities peaks in the year following a loss. 

 

Keywords: Coverage level, Direct and indirect responses, Event study, Recency bias, Weather 

shocks 

JEL codes: D83, D91, G22, Q10, Q54
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Introduction 

Understanding how recent experience can affect the decision-making of individuals under 

uncertainty is a crucial question in behavioral economics. Decision makers typically encounter at 

least some difficulties with making decisions about managing uncertain future outcomes. Many 

important economic decisions are influenced by the utility derived from recent experiences or the 

occurrence of a certain event (i.e., recency effects) when facing risks. Recency effects refer to how 

the strength of recent information affects a decision-maker’s working memory and probability 

judgement (Camerer and Loewenstein 2011). However, to the extent that risks materialize 

independently over time, these events should have limited effect on a decision-maker’s choice 

whenever her goal is to maximize expected payouts or utility. The extant experimental economics 

literature in experienced utility and recency effects finds that experiences at the last moments of an 

experiment have privileged roles in evaluations of subsequent choices (Fredrickson and Kahneman 

1993; Schreiber and Kahneman 2000). 

Many studies have investigated recency effects in different types of insurance markets, and 

also in situations beyond insurance. Stein (2016) analyzes the dynamic nature of rainfall insurance 

purchasing decisions. Based on customer data from the Indian microfinance institution BASIX 

between 2005 and 2007, that paper shows the prior year’s insurance payout to be associated with a 

9 to 22 percentage point increase in participation. For the direct weather effects the paper tests 

how prior year rainfall affects insurance purchases, finding evidence that previous rainfall shocks 

decrease purchases. Based on a nationwide panel dataset of large regional floods and flood 

insurance policies, Gallagher (2014) applies a flexible event study framework to show that 

insurance take-up spikes the year after a flood and then steadily declines back to its baseline. 

Kousky (2017) applies a fixed-effect model to a flood insurance policy dataset when testing for 
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whether hurricane and tropical storm events affect flood insurance choices across all Atlantic and 

Gulf coast states between 2001 and 2010. The results show that a prior year hurricane increases 

net flood insurance purchases and also that this effect dies out after three years.  

Cai and Song (2017) use a novel experimental design to ascertain any roles for experience or 

information in insurance take-up in rural China. In light of the finding that experience gained in a 

recently played insurance game has a stronger effect on actual insurance take-up, they conclude 

that learning from experience displays strong recency bias. In Cai et al. (2016), data from a two-

year field experiment in rural China support the belief that experiencing a year one payout 

increases year two weather insurance demand. The study provides only an indirect channel for 

how exogenous shocks affect insurance demand, which is through the prior indemnity payouts. 

Perhaps closest to our work is that of Bjerge and Trifkovic (2018), who relate extreme weather 

events to a household panel data set that recorded weather insurance index choices in Gujarat, 

India. They find a positive response to excessive rainfall but no response to dry conditions, the 

latter effect likely being due to the presence of irrigation. The above work, and also many other 

lines of recent economic research, have brought attention to what is salient in the minds of 

decision-makers and how objective data are processed (Bakkensen et al. 2019; Royal and Walls 

2019). Questions that naturally arise are whether responses to different risk sources differ and 

whether past indemnification matters in determining these responses. 

In this paper, we examine whether and how recent experience affects insurance choices at 

extensive (how many acres to insure) and intensive margins (which coverage level to choose). We 

are not concerned with how learning about a product through social and other interactions can 

affect diffusion. An extensive literature exists on the economics of product and practice diffusion, 

including the Cai et al. (2015) social network experiment analysis of weather insurance adoption in 
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rural China and the Santeramo (2019) study of crop insurance uptake in Italy. Rather, we are 

concerned with the impact of recent events on demand. Our interest is in the U.S. Federal Crop 

Insurance Program (FCIP), which provides an important setting in which to examine real-world 

recency effects. FCIP is a large insurance market with more than $106 billion of insurance 

protection (i.e., liability) for over 130 different kinds of crops on about 335 million acres in 2018. 

The total premium from about 1.1 billion policies that year was about $9.9 billion, of which the 

government subsidized about 63% and farmers paid about 37% out of their own pockets for 

insurance protection.1 Extensive margin participation in FCIP is high for major crops. For 

example, about 86% of corn and soybeans were insured in 2017, so there is limited potential for 

information asymmetry to affect extensive margin participation.  

FCIP is also a near-ideal setting in which to examine real-world recency effects. The primary 

cause for payouts, being weather events, is exogenous, difficult to predict in advance, and varies 

spatially within a given year. Furthermore, and by contrast with private insurance markets, FCIP is 

not concerned about short-run solvency and adjusts premium rates according to pre-set rules such 

that premiums are largely unaffected by prior year indemnification. In addition, as with other 

insurance markets, there is evidence that crop insurance purchase decisions do not conform to 

predictions based on standard expected utility theory (Du et al. 2017; Pétraud et al. 2015). Our 

hypothesis is that recency effects can explain part of this non-conformity. For example, farmers 

who experienced a natural event or received a higher indemnity in a given year may overestimate 

the year later recurrence probability. Similarly, farmers who did not have such an experience may 

underestimate the probability of an indemnity. 

																																																													
1	Detailed are available at https://legacy.rma.usda.gov/data/sob.html.	
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While recency effects have been examined extensively by psychologists and economists in 

general, there is limited research on how variations in participation relate to recent experience in 

FCIP. Chong and Ifft (2016) have regressed the share of planted acres insured on spatial and 

space-time interaction fixed effects as well as county mean yield deviations from trend. They show 

that corn acres insured increases in the year after an adverse yield shock and, to a lesser extent, 

decreases in the year after a good harvest. But our approach is distinct in that we work directly with 

weather and indemnity variable metrics. This allows us to identify how recent experiences in risks 

posed, rather than the yield deviations that they impact, affect participation decisions. This 

approach also allows us to compare two alternative channels through which recency effects can 

arise, where either the indemnities themselves or the underlying weather shocks may motivate the 

participation response to recent events. 

Our paper contributes to the literature in the following ways. First, we construct a theoretical 

model that includes recency effects in which individuals use recent experiences to update their 

information on the benefits of insurance choices. This model adds to the literature by extending 

the updating model applied in Cai et al. (2016) to include recency effects in the experienced utility 

function. Second, we estimate the impacts of recently experienced indemnity payouts and a variety 

of weather shocks on crop insurance participation through two approaches: a two-step parametric 

approach and a flexible non-parametric approach. The two-step parametric model allows us to 

examine the direct effect of prior year indemnities’ experience, and also the indirect and direct 

effects of prior adverse weather on crop insurance participation. The nonparametric flexible event 

study model (Gallagher 2014) enables us to estimate longer-run impacts of large indemnity on 

participation in subsequent years. Third, our paper provides an integrated perspective on crop 

insurance participation at the extensive and intensive margins. To our knowledge, no study has 
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examined crop insurance demand in terms of these two margins. 

Our findings are as follows. First, in support of the Cai et al. (2016) experimental setting 

conclusion on extensive margin demand under higher prior period indemnity payouts, we find that 

actual prior year indemnities encourage higher extensive and intensive margin participation. 

Second, prior adverse weather events work indirectly by inducing higher participation through 

providing indemnities. Third, the direct effects of prior adverse weather on participation are not 

consistent across different weather events and are insignificant for some events. Fourth, there is an 

immediate but largely transient rise in participation after either a weather shock event or a large 

indemnities’ experience. For example, consider when the indemnity ratio is 70 percent for corn 

(i.e., 70% of policies earning premium in a county are indemnified).2 Then we find that the effect 

of a weather shock event on the logit of participation, as measured by the percent of insured acres, 

peaks at about 13.6 percent in the first year just after that event and declines steadily thereafter. 

In what follows we briefly explain FCIP and how it relates to variations in participation. We 

then adapt the standard expected utility modeling framework to identify and decompose recency 

effects, including direct and indirect roles. Next, we explain the crop insurance and weather data 

that we analyze and also the variables that we construct. Then we apply a two-step parametric 

model to examine the direct and indirect effects of recent experience on participation, and we also 

use a nonparametric event model to test for the lasting effects of large indemnities. After reporting 

and analyzing the estimation results, we conclude with some brief comments. 

 

U.S. Federal Crop Insurance Program Details and Participation Trends 

																																																													
2 Indemnity ratio, as defined above, depends on intensive margin choices. All else equal, the 
indemnification rate will be higher when average coverage level is higher.  
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FCIP was first authorized under the U.S. Agricultural Adjustment Act of 1938 and was run on an 

experimental basis for many decades. Crop and region coverage was limited and contract 

availability might be removed when experience called actuarially soundness into question (Kramer 

1983). Even where available, participation remained low during the initial decades. Reasons for 

small uptake include comparatively low institutional commitment to the program, product novelty, 

token premium subsidy rates, grower liquidity constraints, uninformed rate-setting procedures and 

the prospect of federal enactments to provide region-wide ad hoc free disaster relief transfer 

payments or loans in the event of a general crop failure. 

Participation grew in the decade after the Federal Crop Insurance Act (FCIA) of 1980, which 

finally provided strong federal commitment to the policy. FCIP obtained continuous authorization 

under FCIA while periodic revisions were written into Farm Bill and other enactments. FCIA 

funded premium subsidies at up to 30% and expanded program breadth to cover more crops and 

regions, but sign-up levels did not attain policymaker expectations (Glauber 2004). The Federal 

Crop Insurance Reform Act of 1994 further increased premium subsidies and added a new 

insurance policy, Catastrophic Risk Protection Endorsement (CAT). CAT compensates farmers 

for losses in excess of 50% of normal yield paid at 55% of the estimated market price of the crop. 

CAT is free apart from an administrative fee. It is viewed as distinctive, where contracts that 

provide higher coverage at a positive charge are referred to as buy-up contracts (Shields 2015). 

Acreage participation expanded further after the 1994 Reform Act, and again in the late 

1990s when revenue insurance contracts were introduced. Additional impetus for expansion, and 

especially for higher coverage levels, was provided by further premium mark-downs funded under 

the Agricultural Risk Protection Act of 2000 as well as Farm Bill legislation in 2008 and 2014 

(O’Donoghue 2014). As is shown in Figure 1a, which provides average participation trend lines in 
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a 12 state U.S. Midwestern and Great Plains Region3 for corn and soybean, the percent of planted 

acres that were insured increased markedly between 2001 and 2017. For both corn and soybeans 

acres, average area participation increased from about 70% in 2001 to about 86% in 2017. 

Throughout FCIP’s history the changes in outcomes, especially regarding the percent of 

insured acres and coverage levels, have been closely related to subsidy rates and the development 

of new contract policy designs. Many previous studies have examined the effect of premium 

subsidies on either acreage participation or coverage levels choices.4 Using data from 1985 to 1993, 

Goodwin et al. (2004) focus on corn and soybeans in the Corn Belt and also wheat and barley in 

the Northern Great Plains. Their results, for the 1986-1993 time frame, confirm the hypothesis 

that premium subsidies will modestly increase crop insurance participation. Working with 2011 

county-level contract choice data, Du et al. (2014) find that higher coverage levels are chosen 

where production conditions are better and yields are less risky. O’Donoghue (2014) tests the 

effect of premium subsidies on demand for crop insurance across major crops, including corn, 

soybeans and wheat. Based on county-level data from 1989 to 2012, he shows that an increase in 

subsidies can induce higher enrollment at higher coverage levels, but the effect is not strong. 

With reference to 2009 data, Du et al. (2017) point out that intensive margin participation 

has been far from complete where FCIP is intended to assess pre-subsidy premiums as actuarially 

fair in the aggregate. These observations are noteworthy given the high subsidy rates and Mossin’s 

(1968) argument that risk averse individuals should purchase full coverage when faced with an 

actuarially fair insurance policy. Employing a large insurance unit-level dataset for corn and 

																																																													
3 The twelve states are Iowa, Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, North 
Dakota, Nebraska, Ohio, South Dakota and Wisconsin. 
4 More generally insurance studies have typically covered either the intensive margin or the 
extensive margin, but not both. See analysis by Geruso et al. (2019), on equilibrium under adverse 
selection, for reasoning on why considering these margins separately may be problematic. 
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soybeans and a mixed logit framework, Du et al. also show that the probability of choosing an 

insurance product would decline with an increase in out-of-pocket premium expenditures. This 

suggests that participation may be dampened by behavioral concerns, including placing a heavier 

weighting on more definite expenditures than on less certain indemnity receipts. Ramirez and 

Shonkwiler (2017) and Price et al. (2019) suggest an alternative motivation for reluctance to 

participate, namely that premiums may be fair on the whole but still very bad deals for a significant 

fraction of potential users. 

While extensive margin participation has increased over time, temporal variations in 

participation exist. As can be seen from variations along trend lines in figures 1a and 2b, which 

refer to the previously defined 12 State Region. As seen in Figure 1a, the increase in the percent of 

planted acres that are insured is uneven over time and is especially large after a higher indemnity 

ratio year. Figure 1b provides temporal data on indemnity ratios for the 12 State Region. The 

indemnity ratio depends largely on weather events, and in particular on extreme rainfall and/or 

temperature outcomes during the course of the growing season. It can be seen from boxed 

segments in the figure that the large indemnity ratio increases between 2007 and 2008 (when a 

price decline caused revenue insurance payouts) and also between 2011 and 2012 (a drought year) 

were followed immediately by insured acres increases. The temporal pattern for the Midwestern 

and Great Plains region is also reflected at the state level even though different states have different 

insured acres percentages. For the 2001-2017 interval, Figure 2a shows that corn acreage 

participation increased from 88% to 96% in South Dakota, from 62% to 85% in Illinois, and from 

57% to 77% in Michigan. Furthermore, many locations saw strong acreage participation increases 

in years when others did not. State indemnity ratio data in Figure 3 can be seen to correspond with 

Figure 2 state area participation data, but at a lag. 
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At the intensive margin, average coverage levels demonstrate somewhat similar patterns. 

Figure 4 provides two maps, one for 2001 and the other for 2017, declaring the fraction of corn 

acres in a county that took out 75% coverage or higher in yield and/or revenue insurance. In a 

given year it is clear that Western Corn Belt coverage levels are higher than those in Great Plains, 

Wisconsin, Michigan, Eastern Ohio and other fringe Corn Belt areas. Comparing the two years, in 

most areas the 2017 participation rate at this coverage level far exceeded the 2001 rate. 

Data suggest that intensive margin participation has grown after an indemnity ratio increase. 

Figure 5 considers counties with indemnity ratio greater than 70% in the 2012 drought year to be 

event counties. These maps indicate changes in area participation among those event counties in 

2013 when compared with 2012 for three categories: CAT, buy-up policies, and coverage level of 

at least 75%. It is evident that participation in most event counties increased in 2013 for buy-up and 

at higher coverage levels, but decreased for CAT policies. One way to measure this shift toward 

higher coverage levels is with cumulative area participation curves (CAPC), which sum total acres 

in a crop that have no more than total acreage fraction x, as given on the curve’s x axis. Figure 6 

provides CAPC in 2012 and 2013 for both corn and soybeans. The figure shows that for each crop 

the 2013 CAPC is below that in 2012. Growers increased insurance program participation at the 

intensive margin after the drought year while area participation decreased for CAT policies. The 

change in participation may be caused by the prior large indemnities or by severe weather shocks, 

where recency effects arise.  

To further investigate variation in participation as measured by both the insured acres and 

coverage levels, we will incorporate recency effects into the standard expected utility theoretical 

model of demand for crop insurance. The model is to be viewed as illustrative rather than 

assertive. Its purpose is to provide guidance on the incentives that shape intensive and extensive 
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margin responses. 

 

Theoretical framework 

For a given farm, write crop revenue in year t as 𝑅". It is held to be random with year-invariant 

cumulative distribution function 𝐹(𝑅"), support 0,∞ 	and mean value 𝑅. Farmer can choose 

revenue insurance at coverage level 𝜓".	 When 𝑅" < 𝜓"𝑅 then the insurance contract will pay the 

farmer 𝜓"𝑅 − 𝑅", and when 𝑅" ≥ 𝜓"𝑅 then the contract will pay 0. The actuarially fair premium 

of coverage level 𝜓" is 

 𝑎 𝜓" = 𝜓"𝑅 − 𝑅" 𝑑𝐹 𝑅"
123
4 . (1) 

The premium subsidy rate is 𝑠(𝜓6) > 0, which is a declining function of coverage level according 

to the current government policy. The farmer will pay (1 − 𝑠 𝜓" )𝑎(𝜓") when purchasing 

coverage level 𝜓". Farm production costs are given as C. At coverage level 𝜓", the farmer’s profit is 

 𝜋 𝜓" = max 𝑅", 𝜓"𝑅 − 𝐶 − 𝑛 𝜓" , (2) 

where 𝑛 𝜓" = (1 − 𝑠 𝜓" )𝑎 𝜓"  is the net (after subsidy) premium. Whenever the farmer does 

not participate in crop insurance, i.e., whenever 𝜓" = 0, then profit is 𝜋 0 = 𝑅" − 𝐶. 

For a farmer with an increasing and concave utility of profit function 𝑈(. ), the utility of 

choosing coverage level 𝜓" is 𝑈[𝜋 𝜓" ] and the farmer’s expected utility will be  

 𝐸[𝑈 𝜋 𝜓" ] = 𝑈(max 𝑅", 𝜓"𝑅 − 𝐶 − 𝑛 𝜓" )𝑑𝐹 𝑅"
D
4 . (3) 

It is held to be concave in coverage level, i.e., to display decreasing marginal value of coverage. 

The farmer faces the two-step maximization problem 

 max max
12	

	𝐸[𝑈(𝜋(𝜓"))], 𝐸[𝑈(𝑅" − 𝐶)] , (4) 

where the second argument in the outer max{.,.} statement represents the extensive margin non-
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participation choice. A risk-averse individual should purchase full coverage when faced with an 

actuarially fair insurance policy (Mossin 1968). Thus the expected utility maximizing grower faced 

with actuarially fair and subsidized insurance contracts will both participate and take out the highest 

coverage level available. In this standard model of insurance decisions, past events do not enter 

equation (4) directly as the utility in period t depends solely on the net return in period t. 

As mentioned in the introduction, be it for crop insurance or other asset insurance, this 

theoretical result is not fully supported by empirical data. Anomalies have been observed between 

data and standard model. Over-insurance and under-insurance are both found in some insurance 

markets such as automobile insurance, home insurance and health insurance (Kunreuther et al. 

2013). For FCIP there exist high variations in the growth of participation (Makki and Somwaru 

2001), and under-insurance has been observed (Du et al. 2017), where potential reasons include 

nonlinear probability weighting or loss aversion. Other events may also affect demand, including 

events that affect the availability of alternative risk management tools, moral hazard, and adverse 

election (Just et al. 1999; Sherrick et al. 2004). Here we focus on recency effects as a possible 

explanation for non-optimal choices. We examine how crop insurance participation decisions are 

affected by past experience with a simple updating model that seeks to account for recency effects. 

Our model is somewhat similar to the temporal difference reinforcement learning model 

introduced by Sutton and Barto (2018) and applied by Cai et al. (2016). However, in our model 

decision makers update their belief regarding the insurance product’s value, which is impacted by 

both the indemnity experience and prior weather events. 

As shown in Figure 7, extensive and intensive margin participation decisions are made in 

early Spring, labeled as time 𝑡. Any prior year indemnity occurred in the prior fall at time 𝑡 − 0.5, 

and weather events causing these indemnities occurred during the prior Summer, labeled 𝑡 −
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0.75. One channel through which adverse weather events can have an effect is directly on 

participation, which is route A. The other is indirectly as mediated through indemnities, i.e., first B 

and then C. 

To account for potential recency effects, we expand the traditional expected utility of profit 

function as follows: 

 𝐸 𝑉 𝜓",𝑊"JK = 𝐸 𝑈 𝜋 𝜓" , 𝐵 𝐽 𝑊"JK ,𝑊"JK |𝑊"JK , (5) 

where larger values of 𝑊"JK represent worse weather. Function 𝑉(. ) is the farmer’s expanded 

utility and it incorporates recency effects into the standard utility function, 𝑈(. ). Note several 

major differences between equations (3) and (5) but they all stem from allowing lagged weather 

event variables, 𝑊"JK, to appear in equation (5). By conditioning expected utility on recent events 

we allow for adjustments in a farmer’s assessments of yield or revenue outcome probabilities, 

requiring a Bayesian update of expected utility as suggested by Chong and Ifft (2016). 

In addition, recency effects are allowed for by letting preferences depend on past weather 

events by way of the function 𝐵 𝐽 𝑊"JK ,𝑊"JK , to be explained shortly. The utility function can 

change with the value of this recency effects function. For example, bad recent weather can make 

the grower more risk averse in the manner of Pratt (1964), so that demand for higher coverage 

levels increases. Or losses arising from incomplete insurance may tighten credit constraints on a 

grower such that she or her bank manager see the need for higher coverage levels. Thus we allow 

preferences to shift with context. The stability of risk preferences has long been a matter of some 

controversy, if only because measurement of preferences is imprecise (Schildberg-Hörisch 2018). 

For example, the 2011 Japanese earthquake was found to reduce risk aversion among men but not 

women (Hanaoka et al. 2018). In our case the matter of stability is somewhat moot because model 

(3) is static and accounting for recent events requires a somewhat more dynamic model. Adverse 
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recent events may reflect a decline in wealth so that when the utility function adhered to the 

decreasing absolute risk aversion (DARA) property then a larger value of 𝑊"JK should lead to 

greater risk aversion, which would likely induce higher demand for insurance. Thus risk 

preference may be stable over time and yet might not appear to be so absent an accounting for 

changing circumstances. 

The recency effects component is itself a function of two arguments: the previous year’s 

indemnity experience as represented by indemnity payout 𝐽 𝑊"JK , and also direct weather shocks 

in the previous time period with 𝐵O > 0, 𝐵O being the partial derivative of 𝐵 . , .  with respect to 

the second term 𝑊"JK. The past indemnity payout is of course a function of weather variables 

where 𝐽 𝑊"JK  is a continuously differentiable and increasing function, 𝐽P2QR > 0. Whether recent 

weather when acting through indemnities should have qualitatively the same recency effect as when 

acting directly is debatable, i.e., the recency function derivative with respect to indemnities, 𝐵K, 

might be positive or negative. Indemnities are, in themselves, likely to increase wealth and so at 

least partially offset the direct effect of adverse weather. On the other hand, indemnities may in 

their own right signal the merits of insurance and so render growers averse to the risk associated 

with not having insurance. The total impact of an adverse weather shock on the recency effect is 

given as 𝐵P2QR = 𝐵K𝐽P2QR + 𝐵O. We will hold that this is positive in sign because even if one takes 

the perspective that indemnities act only on replenishing wealth, having no other effect on 

preferences, then incomplete coverage will leave the grower less wealthy, and so more risk averse 

under DARA. 

Extending the above notation to the entire participation problem, eqn. (4) becomes: 

 max 	max
12	

𝐸 𝑉 𝜓",𝑊"JK , 𝐸 𝑈 𝑅" − 𝐶, 𝐵 𝐽 𝑊"JK ,𝑊"JK 𝑊"JK , (6) 

where 𝐽 𝑊"JK  remains in the non-participation alternative because it is the consequence of a 
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previously made decision. We will consider the inner, intensive margin coverage level optimization 

problem first and then turn to the extensive margin discrete choice problem. The optimal coverage 

level is given by setting the derivative of equation (5) with respect to 𝜓" equal to zero, i.e., 

 
TU V 12,	P2QR

T12
= TU W X 12 ,Y Z P2QR ,P2QR |P2QR

T12
= 0. (7) 

Expression (7) may be rewritten as: 

 𝑅 𝑈[ 𝜋 𝜓" , 𝐵 . , . |𝑊"JK 𝑑𝐹 𝑅"
123
4 = T\ 12

T12
𝑈[ 𝜋 𝜓" , 𝐵 . , . |𝑊"JK 𝑑𝐹 𝑅"

D
4 . (8) 

It can be readily shown that an increase in risk aversion is likely to increase the optimal coverage 

level because it will make marginal utility over interval [0, 𝜓"𝑅] larger in comparison with marginal 

utility when averaged over the entire support [0,∞). Thus, to the extent that an increase in the 

recency effects aggregator 𝐵 . , .  increases risk aversion it should lead to an increase in coverage 

level. 

The effect of a past weather event on the marginal value of coverage is given as a further 

derivation of (7): 

 
T]U V 12,	P2QR

T12TP2QR
= T]U W X 12 ,Y .,. |P2QR

T12TP2QR
+ TU W X 12 ,Y .,. |P2QR

T12TY
× 𝐵K𝐽P2QR + 𝐵O . (9) 

If adverse past weather events increase the expected marginal value of coverage, i.e., if expression 

(9) has positive value, then the grower will increase coverage. One way in which this could occur is 

through revised expectations, i.e., shifting the conditioner 𝑊"JK, as reflected by the first right-hand 

expression in (9). This is a direct effect. If production is held to be more risky than had previously 

been believed then demand for insurance might increase. Another way in which the expected 

marginal value of coverage could increase is through changing the history-conditioned utility 

function, as reflected by right-hand product expression in (9). One part of the product term, that 

involving 𝐵O, is a direct effect. The other part, involving 	𝐵K𝐽P2QR , is indirect in that it is mediated 
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through indemnity payouts. We have already argued that each of these product terms in (9) is 

likely to be positive, and so the entire expression is likely to be positive. Thus we argue that 

recency is likely to increase intensive margin participation. 

We turn now to the extensive margin choice in (6). When including recency effects then the 

grower’s value of expected utility of profit absent insurance is likely to decline more severely after 

an adverse weather shock than does the grower’s value of expected utility given at least some 

coverage. After all, the purpose of participation is to provide buffering. This should be true 

regardless of the way in which recency affects the utility function, be it through leading to a revision 

of probability assessments or through changing preferences. Thus extensive margin participation is 

also likely to increase as a result of adverse recent weather shocks.  

Growers will come to different participation choices depending on their own preferences and 

technologies. Specify � 𝑊"JK > 0 as the history-dependent share of growers who participate in a 

region, in our case a county, and � 𝑊"JK > 0 as the region’s mean coverage level conditional on 

participation. Then unconditional mean coverage level is equal to � 𝑊"JK = � 𝑊"JK � 𝑊"JK  

where residual share 1 − � 𝑊"JK  all have coverage level 0. Upon logging this expression and then 

considering the response to recent weather, the total recency effect can be characterized as  

 
_`a[� P2QR ]

_P2QR
= _`a[� P2QR ]

_P2QR
+ _`a[� P2QR ]

_P2QR
, (10) 

where the first right-hand derivative is the extensive margin response when aggregated over all of a 

region’s growers and the second right-hand is the intensive margin response. We have argued that 

both terms should be positive, and so the total recency effect should be positive. The remains of 

this paper will bring data to both right-hand terms in equation (10). 

 

Data Description and Variable Construction 
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In our empirical analysis, we will examine how past years’ weather conditions 𝑊"JK, and past 

indemnity experience 𝐽 𝑊"JK  affect decisions on coverage levels 𝜓". In the current FCIP, 𝜓" 

could be zero, i.e., no participation, or any of {0.5, 0.55, 0.6, 0.65, 0.75, 0.8, 0.85, 0.9} where 0.5 

can be CAT or buy-up. We examine the extensive margin by studying insured acreage share, 

where 𝜓" > 0, and the intensive margin share by studying the weighted average coverage level 

conditional on 𝜓" > 0. 

We employ crop insurance participation data from U.S. Department of Agriculture’s 

(USDA) Risk Management Agency (RMA) data. Data are obtained from Summary of Business 

(SOB) reports and also RMA Data and Cause of Loss (COL) historical data files. The SOB 

dataset contains county-level crop insurance participation information, including net reported 

acreage, the number of policies earning premium, as well as the number of indemnified policies 

under different coverage categories and coverage levels for major crops across the United States.5 

The COL dataset includes determined acreage data at different stages.6 County-level planted 

acreage data for corn and soybeans are obtained from a USDA National Agricultural Statistics 

Service (NASS) survey.7 We focus on insured acres and coverage levels participation choices each 

year during 2001-2017 for two primary crops (corn and soybeans) in the counties of the 12 State 

Region, as previously defined. These states account for the vast majority of the country’s corn and 

soybean crops. 

Let 𝑃c,"d  represent participation, where we use the notation to refer to both intensive margin 

and intensive margin participation. In what follows we explain in some detail our calculation of the 

																																																													
5	Detailed dataset variable lists are available at 
https://www.rma.usda.gov/data/sob/sccc/sobsccc_1989forward.pdf.	
6	Detailed dataset variable lists are available at 
https://www.rma.usda.gov/SummaryOfBusiness/CauseOfLoss.	
7	Detailed data are available at https://quickstats.nass.usda.gov/.	
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extensive margin participation variable. The percent of insured acres is calculated by dividing net 

reported acres by the sum of planted acres and prevented planting acres for each county-crop-year 

observation. Prevented planting acres indicate the number of acres that cannot be planted because 

of flood, drought, or some other natural disaster. These acres are included in net reported acres 

but not in planted acres. We compute prevented planting acres by summing determined acres (i.e., 

the number of acres lost due to damage) across loss stage codes labels P2, PF and PT, which are 

the prevented planting codes in COL Data Files. Let 𝑁𝑅c,"d  denote the net acres reported as 

insured, 𝑃𝐴c,"d  indicate the planted acres, and 𝑃𝑃c,"d  be the prevented planting acres for crop 𝑙 ∈ 

{corn, soybeans} in county i in year t. Then the participation at the extensive margin can be 

specified as 

 𝑃c,"d = 𝑁𝑅c,"d /(𝑃𝐴c,"d + 𝑃𝑃c,"d ). (11) 

In addition, participation at the intensive margin is measured by weighted average coverage level, 

which is computed by using net reported acres at different coverage levels. 

To consider the effect of prior year indemnities on participation choices, we define the 

indemnity ratio to be the ratio of the number of policies indemnified to policies earning premium. 

Let 𝐻c,"d  represent indemnity ratio, 𝐼c,"d  denote the number of yield and revenue insurance policies 

indemnified, and 𝐸c,"d  be the number of policies earning a premium. Then the indemnity ratio is  

 𝐻c,"d = 𝐼c,"d /𝐸c,"d . (12) 

Weather outcomes are fundamental inputs into crop growth, so we use growing degree days 

(G) to measure beneficial heat, stress degree days (S) to measure heat stress, and the Palmer Z 

index to measure moisture stress. We study these variables separately because no commonly 

accepted summary corn favorability weather variable is available and also because a separated 

analysis will allow us to assess whether any recency effects vary by source of shock. Variable G is 
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defined as the sum over growing season days of degrees in Celsius between lower (𝑇d) and upper 

(𝑇m) thresholds, a temperature interval for which the plant is well-adapted to convert this heat into 

growth. Variable S provides a way of measuring temperature stress for a specific crop within its 

growing season. This variable is defined as the sum over growing season days of degrees in Celsius 

in excess of threshold 𝑇n, a number exceeding 𝑇m and above which the plant is poorly-adapted to 

even survive in the long run. May-August is the assumed growing season for corn and soybeans. 

The formulas for variable G and S are 

 𝐺c," = [0.5(min	(max(𝑇c,_rst, 𝑇d) , 𝑇m_∈Ω2 ) + min	(max 𝑇c,_rc\, 𝑇d , 𝑇m)) − 𝑇d], (13) 

 𝑆c," = [0.5(max(𝑇c,_rst, 𝑇n)_∈Ω2 + max 𝑇c,_rc\, 𝑇n ) − 𝑇n], (14) 

where i is county, t is year, d is day, and Ω" is the year t set of growing season days for both corn 

and soybeans. The thresholds are 𝑇d = 10℃, 𝑇m = 30℃, 𝑇n = 32.2℃ (Xu et al. 2013).8 

We use daily temperature to calculate annual variables G and S at the county level. Station-

level daily maximum and minimum temperatures are obtained from the Global Historical 

Climatology Network (GHCN-D) dataset by National Oceanic and Atmospheric Administration 

(NOAA).9 In order to calculate 𝐺c," and 𝑆c," we transfer station-level daily maximum and minimum 

temperatures into county-level daily data. We do so by taking the average daily maximum and 

average daily minimum temperatures for all stations in each county. We insert these county-level 

daily maximum and minimum temperatures during the growing season into equations (13) and 

(14). Then we construct deviations of variables G and S from their ten-years’ average over 1991-

2000, the decade just before our 2001-2017 research period, letting 𝐺 = 0.1 𝐺c,zO444
z{K||K , and 𝑆 =

0.1 𝑆c,zO444
z{K||K . The fractional deviations are 

																																																													
8 The conversions are 10℃ = 50℉, 30℃ = 86℉, 32.2℃ = 90℉. 
9	Detailed data are available at ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/. 
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 𝐺𝐷c," = (𝐺c," − 𝐺)/𝐺, (15) 

 𝑆𝐷c," = (𝑆c," − 𝑆)/𝑆. (16) 

These two constructions represent normalized county-conditioned temperature deviations from 

historical weather conditions. 

Moisture stress is measured by the Palmer Z index (Xu et al. 2013). It reflects the departure 

of a particular month’s weather from that month’s average moisture condition, regardless of what 

has occurred in prior or subsequent months (Heim, 2002). Monthly Palmer Z (PZ) statistics for 

climate divisions in the conterminous U.S. are obtained directly from the NOAA website.10 To 

transfer these climate division data into county-level data, we calculate the area intersections 

between climate divisions and each county, and the weight 𝑃𝑍 by county intersection areas. Then 

we take the average monthly county-level PZ for May-August to represent water stress for the corn 

and soybean growing seasons. The value 𝑃𝑍 = 0 is to be expected, while 𝑃𝑍 ≤ −2 represents 

drought and 𝑃𝑍 ≥ 5 represents flooding (Xu et al. 2013). In order to consider dry and wet 

weather conditions separately, we calculate 

 ���c," = −min( 0, 𝑃𝑍c,"), (17) 

 ���c," = max( 0, 𝑃𝑍c,"), (18) 

where 𝑃𝑍c," is the average PZ value for county i in year t. Therefore, the larger the value of ‘dry’ 

(respectively, ‘wet’) the drier (respectively, wetter) the weather. The preferred weather condition 

for crop growth is neither too dry nor too wet. 

We construct the county-year-crop panel from NASS, RMA and NOAA data. The panel is 

unbalanced since county×year observations can be lost in many ways. For example, NASS 

																																																													
10	Detailed data are available at https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/, accessed on 06 
September 2018.	
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combines counties with small planted acreage into one combined county observation for each state 

in each year, which is labeled as “other (combined) counties.” In addition, county-level GD and 

SD are calculated from station-level data. Some counties do not contain a station observation for 

some years so that we cannot generate GD and SD variables for these counties in some years. 

When constructing a balanced panel, we do not include either the combined counties from NASS 

or the missing counties from NOAA. However, our estimation focuses on the time variability in 

participation related to recent events, so the imbalance is not expected to be an issue. We have 

regressed our model, applying both the unbalanced and balanced panels. The estimation results 

are similar, so we only present the results for unbalanced panel here. Variable definitions can be 

found in Table 1. Table 2 shows the variable descriptive statistics. 

 

Model specification 

Two-step parametric estimation 

We estimate a two-step parametric model to examine the direct effect of prior year indemnities, 

and also the indirect and direct effects of prior adverse weather on crop insurance participation 

choices at both extensive and intensive margins. This allows us to decompose the effect of adverse 

weather on participation choices into the effects on indemnities in the first step, and also the effects 

of prior indemnities and prior adverse weather on insurance participation in the second step. Then 

we also develop estimations for corn and soybeans based on different policies (buy-up vs CAT). 

In the first step, we estimate the effect of adverse weather on indemnity in order to further 

test for the indirect effect on participation through the response to indemnity experience. The 

indemnity ratio 𝐻c,"d  for crop l in county i and year t is specified as the dependent variable. The 

weather variables are denoted as the vector 𝑊c," = (𝐺𝐷c,", 𝑆𝐷c,", 𝑑𝑟𝑦c,", 𝑤𝑒𝑡c,")′ for county i in year 
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t. The time-fixed regression equation is  

 𝐻c,"d = 𝛼4d + 𝛼Kd𝑊c," + 𝛿"d + 𝜀c,"d , (19) 

where 𝛿"d denotes the year fixed effect, and 𝜀c,"d  denotes the error item. 

In the second step, to test for the direct effects of prior indemnities and adverse weather 

shocks on participation choices, let 𝑃c,"d  denote participation choices with our two measures: 

extensive margin and intensive margin. We specify the dependent variable as the logit 

transformation of participation 𝑃c,"d , which is ln[ 𝑃c,"d /(1 − 𝑃c,"d )]. The main explanatory variables 

are indemnity ratio 𝐻c,"d  and weather variables 𝑊c,". The time-fixed regression equation is  

 ln[ 𝑃c,"d /(1 − 𝑃c,"d )] = 𝛽4d + 𝛽Kd𝐻c,"JKd + 𝛽Od𝑊c,"JK + 𝜃"d + 𝑢c,"d , (20) 

where 𝜃"d denotes the year fixed effect, and 𝑢c,"d  denotes the error item. When we apply the logit 

transformation on participation 𝑃c,"d  within its domain [0, 1] for the percent of insured acres and 

[0,1) for weighted average coverage level, zero-valued participation is replaced with 0.0001 before 

transformation, while one-valued participation is replaced with 0.9999 before transformation, since 

the domain of the logit transformation function is (0,1). The logit transformation is applied 

because 𝑃c,"d  is bounded between 0 and 1, so the effect of any particular independent variable 

cannot be constant throughout the range. After applying the logit transformation, the logit of 𝑃c,"d  

can take on any real value, so it is natural to model the regression as a linear function (Papke and 

Wooldridge 1996). 

 

Nonparametric estimation 

We employ a nonparametric flexible event study model (Gallagher, 2014) to estimate the longer-

run impact of large indemnities on subsequent participation choices, in which we include state-by-
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year effects and crop reporting district (CRD) fixed effects. The fixed effects nonparametrically 

control for state-specific yearly factors and unobserved or unchanging CRD characteristics. State-

by-year fixed effects account for state-specific yearly trends that may affect participation, such as 

commodity prices, state-level responses to weather shocks, state economic conditions, and policy 

changes in FCIP. CRD fixed effects preclude inclusion of the underlying location-specific factors, 

such as soil conditions. The causal interpretation of estimation comes from the assumption that 

whether a county experiences a large loss in a particular year is random conditional on state-by-

year and CRD fixed effect. Our main estimation equation is: 

 ln[ 𝑃c,"d /(1 − 𝑃c,"d )] = 𝜙�d𝐷c,",�d�
�{J� + 𝜂�,"d + 𝜎�d + 𝜉c,"d . (21) 

The independent variables are the event time indicator variables, 𝐷c,",�d , which track the year 

of a large indemnity ratio as well as the years before and after a large loss. Here we assert that a 

large loss event occurs in one county when the county’s indemnity ratio is greater than a specific 

cutoff point where we consider 0.1, 0.3, 0.5, 0.7 and 0.9. The value of a cutoff point can denote 

the magnitude of a large loss. For calendar year 𝑡 and crop 𝑙, the indicator variable 𝐷c,",4d  equals to 

1 whenever a large loss appears in county i for year t; the indicator variable 𝐷c,",�d  equals 1 

whenever a large loss appears in county i in year 𝑡 − 𝜏. As counties may have more than one large 

loss during the event study, each loss is coded with its own indicator variable. For example, were 

county 𝑖 to have a large loss in years 2006 and 2012, then for the calendar year 2010 the indicator 

𝐷c,O4K4,�d  would equal 1 since it is 4 years after the loss year 2006 while the indicator 𝐷c,O4K4,JOd  

would also equal 1 since it is 2 years before the loss year 2012. We take 𝜏 ∈ {−5,… ,0… ,5} in 

equation (21), since we are interested in the participation response in the years around a large loss. 

Regarding the other terms in (21), parameter 𝜂�,"d  represents the state-by-year fixed effects term, 

parameter 𝜎�d denotes the CRD fixed effects term, and 𝜉c,"d  is an error term. 
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Estimation Results 

We estimate equations (20) and (21) for both types of participation measures, extensive margin 

and intensive margin. 

 

The effects of indemnities and weather shocks on participation 

Table 3 shows the estimated results for equation (19) in the first step when applied to corn. As 

expected, for all of full samples, buy-up and CAT policies adverse weather conditions are shown to 

be important determinants of the proportion of policies that are indemnified. The strong 

significance of these results and the availability of the data used also underpin our earlier claim that 

crop insurance is a near-ideal real-world setting in which to study recency effects. 

The second step regression results for equation (20) are presented in Table 4, in which we 

apply our two measures of participation. At the extensive margin we can observe that past year 

indemnity ratio plays a positive and significant role in participation for full samples and buy-up. For 

buy-up policies, the coefficient for L.IndemnityRatio is 0.393, where L. represent the one-year lag 

operator on the relevant variable, in this case IndemnityRatio. On the contrary, the 

L.IndemnityRatio coefficient for CAT is -0.548, indicating that prior indemnity ratio can 

discourage CAT policy participation. Although we do not know for sure, because we do not have 

grower-level contract choice data, this is likely an intensive margin effect whereby growers switch 

from CAT to buy-up policies in response to a large loss event.  

When it comes to the direct effect of prior weather shocks, at the extensive margin only the 

𝐿. 𝑤𝑒𝑡 coefficients are significantly negative and only for full samples and buy-up policies. 

Furthermore, the data suggest that excess moisture can decrease subsequent area participation in 
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crop insurance. For CAT policies, the 𝐿. 𝑑𝑟𝑦 coefficient is significant at the 1% level. Drought can 

decrease acreage participation in CAT policies. At the intensive margin, the results show that 

severe heat stress and excess moisture may decrease coverage levels chosen. Therefore, the direct 

effects of prior indemnity ratio on participation at both extensive and intensive margins are 

positive, while the direct effects on participation are not consistent across different weather events 

and they are partially insignificant. 

Combining the Table 3 and Table 4 results, adverse weather shocks are shown to have 

indirect effects on participation at both margins. First, the weather variables’ vector allows for the 

identification of recency effects in regard to risks posed. Then, past indemnities provide a positive 

channel through which recent adverse weather shocks have indirect effects on both the insured 

acres and coverage level chosen. But the direct effects of weather shocks are not consistent across 

different weather events. Tables 5 and 6 report the soybeans regression results in the first and 

second step, respectively. The results are similar to those for corn. 

 

The lasting effects of large indemnities on participation 

The short- and long-run effects of large indemnities on participation for buy-up and CAT policies 

can be found in figures 8-10. These figures plot the coefficients of event time indicator, 𝜙�d , which 

are estimated when implementing equation (21) on the 2001-2017 county-year panel. Event times 

are plotted on the x-axis. Year 0 is a large loss year while years -1 through -5 are the years before 

that large loss, and years 1 through 5 are the years after the loss, respectively. The bands represent 

the 95 percent confidence intervals. 

Panels 8a and 8b in Figure 8 plot point estimates with the buy-up data for corn and soybeans, 

respectively, and the corresponding estimation results on participation are given in Table 7. Taking 
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corn as example in Figure 8a, as is to be expected there is no noticeable trend in area participation 

in the years up to and including a large loss. For the first year after a large loss year, there is a 

greater significant increase in the insurance’s participation relative to the loss year. The increased 

effect on participation then remains positive and statistically significant for the next four or five 

years, but it tapers off year by year. This trend is consistent when our definition of a large loss is 

given as indemnity ratio greater than 0.3, 0.5, 0.7 or 0.9, but it is not significant when the criterion 

is that the indemnity ratio be greater than 0.1. As the cutoff point values increase, the severity of 

loss increases. The figure also shows that participation has a greater increase after the event year 

when facing a severe loss, which is defined with a larger cutoff point. The lasting effects on 

participation are longer when higher indemnity ratio cutoffs are invoked. 

Figures 9 plots the event time indicators’ coefficients for CAT policies. CAT policy 

enrollment responses are the reverse of the buy-up responses given in Figure 8. This would appear 

to be an intensive margin response. Rather than exit the program, growers respond to the adverse 

weather shock by replacing CAT policies with buy-up policies. Figure 10 presents the event time 

indicator coefficients for participation as measured by the weighted average coverage level at the 

intensive margin. The average coverage level chosen increases after a large loss and the gain taper 

off over time. Moreover, the regression results (available in supplemental materials) for full 

samples and higher coverage levels at the extensive margin and for buy-up samples at the intensive 

margins are similar to the buy-up policies at the extensive margin, as presented in Table 7. 

 

Conclusion 

It is important to understand how recent experience affects individuals’ decision-making when they 

face uncertain risks. FCIP has become a cornerstone of agriculture programs in the United States 
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while similar programs in other countries are either well-established or in development. This paper 

seeks to better understand how recency effects influence farmers’ crop insurance participation 

decisions at extensive and intensive margins. We not only document the existence of recency 

effects in farmers’ decision-making processes but also examine the impacts of recent events 

through different channels. A better understanding of recency effects may provide more useful 

information for the improvement of crop insurance programs. 

Our paper extends the standard theoretical model of insurance demand by incorporating 

recency effects caused by weather shocks or large indemnities. We construct two channels through 

which recent experience can affect insurance product’s valuation. One is the direct effect; the other 

is the indirect effect as mediated through indemnities. We apply two estimation approaches to 

examine these recency effects. In one a two-step parametric model is applied, and we decompose 

the effects of adverse weather events on participation into the effect on indemnities in the first step 

and also the effects of prior indemnities and prior adverse weather shocks on insurance 

participation in the second step. In the other approach we use a nonparametric flexible event study 

model to test for the long-run impacts of large indemnities on subsequent participation. Moreover, 

we apply the above estimations at both extensive and intensive margins. 

Our estimation results contribute to the literature by highlighting the importance of 

considering recency effects in the insurance participation. First, for both extensive and intensive 

margins we provide additional evidence that prior large indemnities promote higher crop 

insurance participation in the following year. Our work adds to those of Cai et al. (2016) for rice 

production insurance in China, and to Stein (2016) and Bjerge and Trifkovic (2018) for weather 

index insurance in India, where our data are much more extensive, regard multiple shock sources 

and apply to actual market choices. Second, we explore how weather shocks affect insurance 
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participation. Our results show that the direct effects of weather are not consistent across different 

weather events and are insignificant for some events. This finding, when combined with the clear-

cut effects of indemnity, suggests that adverse weather events affect insurance participation largely 

indirectly through the indemnity channel. We also show that the total effect of a large loss on 

participation peaks just after the event, and then begins to steadily decline. In doing so we provide 

support for the generality of findings in Gallagher (2014) regarding flood insurance. 

From a policy perspective, promoting crop insurance participation at low cost outlay has 

been an ongoing challenge for the U.S. Federal Government. A better understanding of recency 

effects may help in this regard although our current understanding of these effects is insufficient to 

make policy proposals. One matter is whether there exist opportunities to take advantage of 

human psychological inertia, i.e., the tendency to make a decision such as enrolling in crop 

insurance or choosing a higher coverage level and then being unmotivated to change it unless 

shocked into doing so. A development on our inquiries is to decompose the temporal response to 

a weather shock into permanent and transient components. If the response is largely temporary 

then there may be little to gain from a policy strategy to take account of these demand effects.  

A further matter is whether responses are stronger for some shocks than for others. We 

found strong responses to four sorts of weather shocks. However, revenue insurance also covers 

adverse price shocks. Currently our analysis cannot address price shocks because they are likely to 

be captured by our time fixed effects, but an alternative specification might be able to allow for the 

measurement of responses to price shocks. Doing so could provide interesting additional insights. 

For many crops, substitute risk management instruments are available and are widely used, 

including forward and futures contracts and also put options. Given these alternatives, the 

insurance contract response to a price shock may be different. The response may be muted while 
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shifting between revenue and yield contracts may also occur. Responses may differ between crops 

for which price derivative markets are deep, as in corn or wheat, and those for which they are not, 

as in sorghum.  

Our empirical analysis has not sought to clarify whether recency effects are rational. This 

would be a challenging endeavour, but certain strategies for doing so may be feasible. Perhaps the 

easiest way to do so is to consider how yield probabilities are revised in light of a weather event. 

One approach might follow Royal and Walls (2019) in eliciting yield probabilities through a grower 

survey and correlating these with weather histories. To be most informative, such a data set would 

have to be in panel form so that an assessment could be made of updating after a weather shock. 

Historical farm-level yield data and Bayesian methods might be used to develop plausible bounds 

on objective revisions, to be compared with grower revisions. 

A fourth matter that merits further scrutiny is whether the group response to a shock differs 

from private responses. Weather risk is generally, but not always, systemic in nature. Thus it is 

difficult to ascertain whether the aggregate response equals the sum of private responses or is also 

in part determined by how others in the area respond to the same shock. This is a version of 

Manski’s (1993) reflection problem. But some weather shocks can be quite localized, as with hail 

and with minor flooding events. This distinction may allow for insights into the social dimension of 

responses when compared with the private dimension. However, grower-level data might be 

necessary to pursue that line of thought.  
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Figures and Tables 

  

(1a) Acreage participation                                     (1b) Indemnity ratio 

Figure 1 Extensive margin participation, as measured by percent of planted acres that are insured, 

and also indemnity ratio for corn and soybeans in the 12 State Region for the period 2001-2017. 

The states are Iowa, Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, North Dakota, 

Nebraska, Ohio, South Dakota and Wisconsin. See Table 1 for formal definitions of participation 

rate and indemnity ratio 

 

  

           (2a) Corn                                                         (2b) Soybeans 

Figure 2 Extensive margin participation, as measured by percent of planted acres that are insured 

acres for corn and soybeans by selected states over the period 2001-2017 
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          (3a) Corn                                                             (3b) Soybeans 

Figure 3 Average indemnity ratio for corn and soybeans in selected states over the period 2001-

2017 

 

 

 

     

(4a) 2001                                                    (4b) 2017 

Figure 4 Change in intensive margin participation east of the Rockies between 2001 and 2017, as 

measured by percent of insured acres for corn acres that are insured at coverage levels of at least 

75% 
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(5a) CAT                                                                  (5b) Buy-up 
 
 

         
 
                   (5c) At coverage levels of at least 75% 
 
Figure 5 Changes in intensive margin participation in the Upper Midwest, as measured by percent 

of insured acres in event counties in 2013 when compared with the drought year 2012 for CAT, 

buy-up policies and at coverage levels of at least 75%. Here the event counties are defined as those 

whose indemnity ratio was greater than 0.7 in 2012 
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      (6a) Corn                                                              (6b) Soybeans 

Figure 6 Cumulative participation in the 12 State Region, as measured by percent of insured acres 

for corn and soybeans in drought year 2012 and the following year 2013 

 

 

 

 

 

  

Figure 7 The effects of recent experience on participation 
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           (8a) Corn                                                             (8b) Soybeans 

Figure 8 How the logit transformation of buy-up contract participation, as measured by percent of 

insured acres in buy-up contracts, responds to a large disaster event. Data are for 12 State Region 

and 2001-2017 period. The corresponding event coefficient estimates for corn can be found in 

Table 7 

 

 

  

           (9a) Corn                                                            (9b) Soybeans 

Figure 9 How the logit transformation of CAT participation, as measured by percent of insured 

acres in CAT, responds to a large disaster event. Data are for 12 State Region and 2001-2017 

period 
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           (10a) Corn                                                           (10b) Soybeans 

Figure 10 How the logit transformation of intensive margin participation, as measured by acreage 

weighted average coverage level for participating acres, responds to a large disaster event. Data are 

for 12 State Region and 2001-2017 period. Coverage level for the CAT contract is set equal to 0.5 
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Table 1 Definition of variables 

 Variable Description 

Participation P (Extensive margin) Percent of insured acres = Net reported acres / 
(Planted acres + Prevented planting acres) 

  (Intensive margin) Weighted average coverage level 
Indemnity ratio H Number of policies indemnified/Number of policies earning 

premium 
Weather 
variables 

GD Deviation from the average GDD over 1991-2000 
SD Deviation from the average SDD over 1991-2000 
dry Negative value of the minimum among 0 and the Palmer Z value 
wet The maximum among 0 and the Palmer Z value 

 
Note: For participation we have two measures, extensive margin (percent of insured acres) and 
intensive measure (weighted average coverage level), where “net reported acres” and “coverage 
level” are from summary of business (SOB) of RMA and “prevented planting acres” is from the 
RMA cause of loss (COL) dataset. “Planted acres” is from NASS. For indemnity ratio, both the 
number of policies indemnified and the number of policies earning premium are from RMA. 
 

 

Table 2 Variable descriptive statistics 

 Variables Obs  Mean Std.Dev. Min Max 
Corn Percent of 

insured acres (P) 
 
WACL (P) 

Full samples 14,961 0.799 0.152 0.035 1.000 
Buy-up 14,961 0.744 0.194 0.000 1.000 
CAT 14,195 0.058 0.085 0.000 0.716 
Full samples 14,961 0.684 0.080 0.000 0.897 

Indemnity 
Ratio (H) 
 

Full samples 14,961 0.318 0.245 0.000 1.000 
Buy-up 14,960 0.338 0.254 0.000 1.000 
CAT 13,515 0.084 0.182 0.000 1.000 

Soybeans Percent of  
insured acres (P) 
 
WACL (P) 

Full samples 14,191 0.796 0.151 0.000 1.000 
Buy-up 14,191 0.747 0.188 0.000 1.000 
CAT 13,220 0.053 0.074 0.000 0.759 
Full samples 14,191 0.692 0.076 0.000 0.893 

Indemnity 
Ratio (H) 
 

Full samples 14,189 0.290 0.220 0.000 1.000 
Buy-up 14,188 0.308 0.232 0.000 1.000 
CAT 12,452 0.064 0.155 0.000 1.000 

Weather 
variables 

GD  13,296 0.011 0.120 -1.000 0.807 
SD  13,296 0.404 1.767 -1.000 27.455 

 dry  14,961 0.038 0.088 0.000 1.330 
 wet  14,961 0.086 0.121 0.000 1.372 

 
Note: WACL represents weighted average coverage level. Coverage level for the CAT contract is 
set equal to 0.5.   
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Table 3 The first-step indemnity regression with FE for corn, equation (19) 
 
Dependent variable  Indemnity ratio 
Categories Full samples     Buy-up         CAT 
    
GD -0.054** -0.064*** -0.031* 
 (0.021) (0.022) (0.018) 
SD 0.023*** 0.025*** 0.011*** 
 (0.002) (0.002) (0.001) 
dry 0.927*** 0.958*** 0.612*** 
 (0.031) (0.032) (0.025) 
wet 0.249*** 0.258*** 0.200*** 
 (0.021) (0.022) (0.017) 
Year FE Yes Yes Yes 
Constant 0.221*** 0.262*** 0.047*** 
 (0.007) (0.008) (0.006) 
    
Observations 11,976 11,975 10,935 
R-squared 0.290 0.283 0.134 
Number of counties 892 892 877 

 
Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4 The second-step participation regression with FE for corn, equation (20) 

 Extensive margin Intensive margin 
Dependent Variables Logit of insured acres percentage Logit of WACL 
Categories Full samples Buy-up CAT Full samples 
     
L.IndemnityRatio 0.357*** 0.393*** -0.548*** 0.135*** 
 (0.041) (0.034) (0.059) (0.005) 
L.GD 0.090 0.057 0.033 0.003 
 (0.093) (0.080) (0.105) (0.011) 
L.SD 0.010 0.006 -0.012 -0.002** 
 (0.007) (0.006) (0.008) (0.001) 
L.dry -0.059 0.154 -0.588*** 0.023 
 (0.139) (0.120) (0.150) (0.016) 
L.wet -0.326*** -0.243*** 0.011 -0.027*** 
 (0.091) (0.078) (0.100) (0.010) 
Year FE Yes Yes Yes Yes 
Constant 1.170*** 0.524*** -2.378*** 0.716*** 
 (0.033) (0.028) (0.033) (0.004) 
     
Observations 11,976 11,975 10,935 11,976 
R-squared 0.153 0.302 0.503 0.695 
Number of counties 892 892 877 892 

 
Note: WACL represents weighted average level. Coverage level for the CAT contract is set equal 
to 0.5. Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5 The first-step indemnity regression with FE for soybeans, equation (19) 

Dependent Variable Indemnity ratio 
Categories        Full samples        Buy-up CAT 
    
GD -0.101*** -0.114*** -0.000 
 (0.019) (0.020) (0.017) 
SD 0.012*** 0.012*** 0.003** 
 (0.001) (0.001) (0.001) 
dry 0.739*** 0.764*** 0.375*** 
 (0.031) (0.032) (0.027) 
wet 0.182*** 0.187*** 0.168*** 
 (0.019) (0.020) (0.017) 
Year FE Yes Yes Yes 
Constant 0.240*** 0.287*** 0.046*** 
 (0.006) (0.007) (0.005) 
    
Observations 11,392 11,391 10,116 
R-squared 0.346 0.359 0.055 
Number of counties 841 841 813 

 
Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6 The second-step participation regression with FE for soybeans, equation (20) 

 Extensive margin Intensive margin 
Dependent Variables Logit of insured acres percentage Logit of WACL 
Categories Full samples Buy-up CAT Full samples 
     
L.IndemnityRatio 0.188*** 0.229*** -0.271*** 0.125*** 
 (0.052) (0.044) (0.070) (0.006) 
L.GD 0.060 0.066 0.009 0.009 
 (0.101) (0.089) (0.111) (0.011) 
L.SD 0.014* 0.013** -0.005 0.001 
 (0.007) (0.007) (0.008) (0.001) 
L.dry -0.215 0.011 -0.884*** 0.111*** 
 (0.168) (0.149) (0.183) (0.018) 
L.wet -0.324*** -0.285*** -0.232** 0.009 
 (0.103) (0.091) (0.114) (0.011) 
Year FE Yes Yes Yes Yes 
Constant 1.472*** 0.799*** -2.418*** 0.737*** 
 (0.036) (0.033) (0.036) (0.004) 
     
Observations 11,392 11,391 10,116 11,392 
R-squared 0.128 0.249 0.492 0.659 
Number of counties 841 841 813 841 

 
Note: WACL represents weighted average level. Coverage level for the CAT contract is set equal 
to 0.5. Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 7 How the logit transformation of buy-up contract participation, as measured by percent of 
insured acres in buy-up contracts, responds to a large disaster event for corn, equation (21) 

  The indemnity ratio cut-off points 
 0.1 0.3 0.5 0.7 0.9 
VARIABLES Dependent variable: Logit of insured acres percentage 
           
5 years before event -0.005 -0.005 -0.009 -0.001 -0.116** 
 (0.021) (0.020) (0.025) (0.040) (0.054) 
4 years before event 0.001 0.009 0.033 0.008 0.010 
 (0.022) (0.018) (0.025) (0.036) (0.049) 
3 years before event -0.028 -0.006 0.008 0.007 0.101 
 (0.021) (0.018) (0.023) (0.036) (0.082) 
2 years before event -0.002 0.025 0.015 -0.054 0.035 
 (0.021) (0.018) (0.024) (0.034) (0.066) 
1 year before event -0.016 0.008 0.037 -0.006 -0.001 
 (0.020) (0.018) (0.024) (0.030) (0.061) 
Event year 0.013 0.059*** 0.051* 0.029 -0.016 
 (0.023) (0.019) (0.027) (0.033) (0.059) 
1 year after event -0.010 0.079*** 0.140*** 0.174*** 0.232*** 
 (0.021) (0.021) (0.026) (0.038) (0.069) 
2 years after event -0.000 0.055*** 0.142*** 0.230*** 0.160** 
 (0.022) (0.018) (0.024) (0.039) (0.069) 
3 years after event 0.014 0.059*** 0.102*** 0.195*** 0.219*** 
 (0.022) (0.018) (0.023) (0.035) (0.064) 
4 years after event 0.000 0.045** 0.055** 0.110*** 0.218*** 
 (0.019) (0.019) (0.025) (0.034) (0.065) 
5 years after event -0.003 0.029 0.029 0.135*** 0.203*** 
 (0.023) (0.021) (0.023) (0.037) (0.071) 
State-by-year FE Yes Yes Yes Yes Yes 
CRD FE Yes Yes Yes Yes Yes 
Constant 0.463*** 0.391*** 0.397*** 0.439*** 0.434*** 
 (0.073) (0.038) (0.033) (0.027) (0.021) 
      
Observations 14,961 14,961 14,961 14,961 14,961 
R-squared 0.402 0.405 0.409 0.412 0.406 
Number of counties 973 973 973 973 973 

 
Note: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 
 


